Computer Graphics

Clipping & Hidden Surface Removal

Teacher: A.Prof Chengying Gao (=hL3E)

E-mail: mcsgecy@mail.sysu.edu.cn

School of Data and Computer Science

7~

PSS SR
N R
=N 3 k
BN S

mailto:suzhuo3@mail.sysu.edu.cn

Viewing Pipeline Review

A

XV

View Orientation

high

-

low

Computer Graphics @ ZJU

Computer Graphics

Y

Projection

Mapping

Hongxin Zhang, 2015

Projection

Orthographic Perspective

Computer Graphics @ ZJU Hongxin Zhang, 2015

Computer Graphics

Why eliminating invisible objects?

m Hidden surface removal (HSR) may reduce ambiguity

(a) (b) (©)

(a) Cube wireframe; (b) B is the nearest; (c) C the neartest

Why eliminating invisible objects?

* Visible and invisible portions of objects
 Enhance reality (341 & H2 1Y) B 52 5K)

* Projection: 3D space—2D space
* 2D space: sorting according to depth may add 3D cueing

Visible Surface Determination

* Goal
- Given: a set of 3D objects and Viewing specification,

- Determine: those parts of the objects that are visible when
viewed along the direction of projection

* Elimination of hidden parts (hidden lines and surfaces)

* Visible parts will be drawn/shown with proper colors and
shade

:&#:) Computer Graphics

Outline

* Clipping

e Hidden Surface Removal

Projection plane
X

Computer Graphics

Clipping

 Clipping of primitives is done usually before scan converting
the primitives

* Reasons being

e Scan conversion needs to deal only with the clipped version of the
primitive, which might be much smaller than its unclipped version

Computer Graphics

How would we clip?

* 2D clipping
 Clipping is easy for Line and Polygons
* Clipping is hard for curve and Text

* They can be converted to lines and polygons first

/7

© ABC) AB

*
i&i@:) Computer Graphics

2D Clipping Methods

* Brute force approach:
e compute intersections with all sides of clipping window

* Inefficient: one division per intersection (E&i1&ERE)

Computer Graphics

Segment-Segment Intersection

[;-le-v"lj } L

(3)

(X1 =23 +(x = xb)y (

Gy =1, L, telod] G, =1 | s

|V (1) =wo +(¥; —)t [1(-’) = vy i~)
Intersection: x & y values equal in both representations - two linear

equations in two unknowns (r,f)
test if resulting r & t are inside the [0,1] range

:r; + (Tll — x;)r =x§ +(xf — xﬁ)r

vo+(M-wm)=ys +(3 -y)r

Intersection with axis-aligned lines

11 V G,
(_1'u~.]’u}

: x0.30)

t[0.1],G

- [r=stati) [Fe= o

B R () e (Y v ()= vi+(vE -2)

Intersection: x & y values equal in both representations - two linear
equations in two unknowns (r.f)

1 1 1)L L2
Xy +(x1 _xu}_xn

2 1
X5 —xy . : :
r=——"2 if t<0or t > 1nointersection
¥—x
1 0

)+ (}’: — J«‘;}‘ = y§ + ()f — yf,’ }‘, (relevantonly for segments)

2D Clipping Methods

e Cohen-Sutherland : Codeing

Mid-point clipping(? =243 Z|F5Y): Divided by 2, shift
operation

Parametric clipping (& #5-Barsky #57): High efficiency

Nicholl-Lee-Nicholl: More precise

Cohen-Sutherland Algorithm

* |ldea: eliminate as many cases as possible without computing
intersections

 Start with four lines that determine the sides of the clipping
window

y:ymaV
s

y= ymin

Computer Graphics

The Cases

e Case 1: both endpoints of line segment inside all four lines
* Draw (accept) the line segment as is

y= ymax
X = Xmin / X = Xmax
y= ymin

e Case 2: both endpoints of line segment on same side of a line
* Discard (reject) the line segment

Computer Graphics

The Cases

* Case 3: One endpoint inside, one outside

e Must do at least one intersection

e Case 4: Both outside

* May have part inside

* May the whole segment be out of windows

//y:yma}-
7

g /

Computer Graphics

Defining Outcodes

* For each endpoint, define an outcode

bo b1 bz b3
b,=1ify>y. .., 0 otherwise 1001 | 1000 | 1010 ey
b, = 1 if X > X, O Otherwise o1 Tot00 [orig » " T
by = 1if X <X, 0 otherwise W DA

* Outcodes divide space into 9 regions
* Computation of outcode requires at most 4 subtractions

Computer Graphics

Reject

. 0100 \\u{\u
(outcodel OR outcode2) == !
line segment is inside = P

0010 . 0000 > 1000
/
(outcodel AND outcode2) =0 /y /Mm

line segment is totally outside w1~ / -
0001
(outcodel AND outcode2) ==

line segment potentially crosses clip region

False positive

Some line segments that are classified as potentially
crossing the clip region actually don't

Using Outcodes

 Consider the 5 cases below
e AB: (outcode(A) OR outcode(B) == 0)

* Accept line segment

*
i&#:) Computer Graphics

Using Outcodes

* EF: (outcode(E) AND outcode(F) ! =0)
* Both outcodes have a 1 bit in the same place
* Line segment is outside of corresponding side of clipping window

* reject

Computer Graphics

Using Outcodes

e CD: (outcode (C) AND outcode(D) == 0)
* Compute intersection
e Location of 1 in outcode(D) determines which edge to intersect with

* Note if there were a segment from A to a point in a region with 2 ones
in outcode, we might have to do two interesections

Using Outcodes

* GH and lJ: same outcodes, logical AND vyields zero

* Shorten line segment by intersecting with one of sides of
window

 Compute outcode of intersection (new endpoint of shortened
line segment)

* Reexecute algorithm

Computer Graphics

0101 0100 0110
A oy

Algorithm :

0001 % 0000 0010

E
1001 1000 \3101[}

B

Check Line P1P2: AB—CB—> DB~ DE

(1) If P,P,is completely inside, accept it; if P,P, is completely

outside, reject it; otherwise go to step 2;

(2) Find an end point P,(or P,) of lineP,P, outside of region;

(3) Find the intersection point P’;to replace P,(or P,)

(4) If P,P,is completely inside , then accept this line, else go to step 2.

Efficiency

* In many applications, the clipping window is small relative to
the size of the entire data base

* Most line segments are outside one or more side of the window and
can be eliminated based on their outcodes

* Inefficiency when code has to be reexecuted for line segments
that must be shortened in more than one step

Computer Graphics

Polygon clipping

* It’s harder than clipping segment.
* Clipping a segment produce a segment at most.

* Clipping a polygon may produce several polygons.

~
/ N\ / N\
D >

o b)

* To convex polygon, clipping a polygon only produces a polygon.

Computer Graphics

Polygon clipping

TRl kS(WIAHA—AZ AR,
X /it #2 4R A %] o~ (tessellation)

IR YRS AL E

" ACGLUA A 4| 9K 5, R G@F ki Rd AP
a, ot 4T

Sutherland-Hodgeman algorithm

* Present the vertices in pairs

—(Vn,V1), (4, V2), (V2,V3), .., (Vnot,Vi)
—For each pair, what are the possibilities?
—Consider vy, v,

Inside

Vi~

v

Qutside

/

/

output Vo

Inside

/

V4

Outside

/

N

Vo

output 1

Inside

A

Qutside Inside | Outside

/I Vz
Vo

TV

no output

output 1
and V5

52

Example
Vs, V4

S . Inside | Outside Inside | Outside
5
\
Vv
P Vi It
Vs
Inside, Inside Current

Output v, Output
53

V1:V2

Inside | Outside

\7

Inside, Inside
Output v,

A\

Vs

Inside

Qutside

Current
Output

54

Vi

Vs

Inside, Outside

Inside

V2: V3

Outside Inside | Outside
\7
Vl
. P)
3 i
il \?2
Current
Output

Output 1,

55

V3, V4

Inside | Outside Inside | Outside
Vs
v, P
\'8 v,
S
lr -
3 i
Vs Vs
Outside, Outside Current

No output Output
56

Vi

V4, V5 — last edge...

P Inside | Outside
Vs)
12\;4 S
/3
Vs

Outside, Inside
Output 1,, Vs

A\

Vs

Inside | Outside

Current
Output

57

Bounding Box

R AR LA ERI AR AFTHY, RALA-NTEH
HdhhFAGLTAINRACHKRKOR 344
o 1A 2 A4
o A1t H E4dira Rk KA RN

Bounding Box

R F i AEATARLARSIUAGHAL HERE

i 2 B A4) BY Ak R

Outline

* Clipping

e Hidden Surface Removal

Projection plane
X

Computer Graphics

Hidden surface removal

« Object Space Method (X Z[H])

v’ a.k.a. Object Precision
v Work in 3D before scan conversion

v Usually independent of resolution
» Important to maintain independence of output device(screen/ printer etc.)
v Hidden Line/surface Remove

* Image Space Method (&% Z[q])

v’ a.k.a. Image Precision

v' Work on per-pixel/per of fragment after scan conversion
v" Much faster, but resolution dependent
v’ Z-Buffer/Depth Buffer

Framework of HSR in object space

for(each object in the world) {

determine those parts of the object whose view is
unobstructed by other parts of it or any other object;

draw those parts in the appropriate color;

}

Features

* High preciseness, independent of resolution of display
devices (I&& & T 45 % 1) CAD L F2 40
e Complexity O(n?):
* Each object should be compared with the other
* n:object number

e Back surface culling,...

Framework of HSR in image space

for(Each pixel in the image) {

connect the pixel and the viewpoint
find the nearest object;

compute the color for the pixel;

Features

 The image is constrained by resolution of the display
devices

* Complexity O(nN):

* Objects should be sorted for each pixel (use coherence! S PR HKH 7

XA HE)

* n: the number of primitives (polygons)
* N:the number of pixels

e Algorithms: z-buffer

Object Space Method

= Determine visibility on object or polygon level
= Using camera coordinates
= Resolution independent
= Explicitly compute visible portions of polygons
= Early in pipeline
= After clipping
= Requires depth-sorting
= Painter’s algorithm
= BSP trees

Back face culling

- In a closed polygonal surface

- i.e.the surface of a polyhedral volume or a solid
polyhedron

- The faces whose outward normals point away from
the viewer are not visible

- Such back-facing faces can be eliminated from
further processing

- Elimination of back-faces is called back-face culling

Back face culling

* Let V be the viewing direction from the object to the camera;
n the normal of the face to be tested
* N-V<0: Invisible
* N-V>0: visible

N

0>90°1

v N
9T}PO

Back face culling

= Determine back & front faces using sign of
inner product nv

n-v=nyv +nyv +nv = HHH-HvHCOS e
= In a convex object :

= Invisible back faces

= All front faces entirely visible = solves hidden
surfaces problem

= In non-convex object:
= Invisible back faces

= Front faces can be visible, invisible, or partially
visible

Limitations

* Only applicable to convex polyhedra

Painter’s Algorithm

= Simple: render the polygons from back to
front, “painting over” previous polygons

= | X

= Draw cyan, then green, then red
= Will this work in general?

V. AUEL o

For 2D application

Draw items one at a time

For 2D application

Draw items one at a time

For 2D application

Draw items one at a time

Painter’s Algorithm:Problem

What Order?

Painter’s Algorithm:Problem

What Order?

Painter’s Algorithm:Problem

= Intersecting polygons present a problem

= Even non-intersecting polygons can form a
cycle with no valid visibility order:

\

Z-buffer algorithm

* Image precision algorithm

- Apart from a frame buffer F in which color values are
stored,

- it also needs a z-buffer, of the same size as the frame
buffer, to store depth (z) values

F-Buffer Z-Buffer

A.K.A. depth-buffer method

Z-buffer algorithm

= What happens if multiple primitives occupy
the same pixel on the screen?

= Which is allowed to paint the pixel?

Polygon Scan Conversation

&
Y
Xl

Y Scan Line
Y,
Y.

3

X3
Computer Graphics @ Z|U Hongxin Zhang, 2015

Computer Graphics

Z-buffer algorithm

y .
I view
/Z &~ direction
view
. .
point
] m 0
B O 2
Screen F-Buffer Z-Buffer

Computer Graphics @ ZJU Hongxin Zhang, 2013

Z-Buffer Pseudo-code

- for (j=0; j<SCREEN_HEIGHT; j++)
- for (i=0;i<SCREEN_WIDTH;i++) {
- WriteToFrameBuffer (i, j, BackgroundColor);
- WriteToZBuffer(i, j, MAX);

-}

- for (each polygon)
- for (each pixel in polygon's projection) {
- z = polygon's z value at (i,) ;

- if (z < ReadFromZBuffer(i,)) {

- WriteToFrameBuffer(i, j, polygon's color at (i, j));
- WriteToZBuffer (i, j, z);

Z-Buffer Pros

= Simple!!!
= Easy to implement in hardware

= Hardware support in all graphics cards today
= Polygons can be processed in arbitrary order
= Easily handles polygon interpenetration

Z-Buffer cons

= Poor for scenes with high depth complexity

= Need to render all polygons, even if
most are invisible

L

eye

= Shared edges/overlaps handled inconsistently
= Ordering dependent

Binary Space Partitioning Trees

- BSP Tree

- Very efficient for a static group of 3D polygons as
seen from an arbitrary viewpoint

- Correct order for Painter’s algorithm is

determined by a suitable traversal of the binary
tree of polygons

BSP Tree

Computer Graphics (@ ZJU Hongxin Zhang, 2014

BSP Tree

Tt

Computer Graphics @ ZJU Hongxin Zhang, 2014

Binary Space Partition Trees

= BSP Tree: partition space with binary tree of
planes

= Idea: divide space recursively into half-spaces
by choosing splitting planes that separate
objects in scene

= Preprocessing: create binary tree of planes

= Runtime: correctly traversing this tree
enumerates objects from back to front

Creating BSP Trees: Objects

Creating BSP Trees: Objects

. O
6i N

;?(T Eﬁﬁii
Y

Creating BSP Trees: Objects

© :

&g /\

%m%§m «
Y ;

Creating BSP Trees: Objects

Creating BSP Trees: Objects

Splitting Objects

= No bunnies were harmed in previous example

= But what if a splitting plane passes through
an object?

= Split the object; give half to each node

Traversing BSP-Trees

= Tree creation independent of viewpoint
= Preprocessing step

= Tree traversal uses viewpoint

= Runtime, happens for many different
viewpoints

Traversing BSP-Trees

= Each plane divides world into near and far
= For given viewpoint, decide which side is near
and which is far

= Check which side of plane viewpoint is on
independently for each tree vertex

= Tree traversal differs depending on viewpoint!
= Recursive algorithm
= Recurse on far side

= Draw object
= Recurse on near side

Traversing BSP-Trees

A 4
C
B
rasterize(C) rasterize(B)
rasterize(A) rasterize(A)
rasterize(B) rasterize(C)

BSP-Trees: Viewpoint A

BSP-Trees: Viewpoint A

BSP-Trees: Viewpoint A

= decide independently at ﬁ |
each tree vertex o L

= ot just left or right child!

BSP-Trees: Viewpoint A

BSP-Trees: Viewpoint A

BSP-Trees: Viewpoint A

BSP-Trees: Viewpoint A

BSP-Trees: Viewpoint A

BSP-Trees: Viewpoint A

BSP-Trees: Viewpoint A

BSP-Trees: Viewpoint A

BSP-Trees: Viewpoint A

oint A

BSP-Trees: View

BSP-Trees: Viewpoint B

BSP-Trees: Viewpoint B

BSP Tree Construction: Polygons

- The binary tree is constructed using
the following principle:

- For each polygon, we can divide the
set of other polygons into two
groups

- One group contains those lying in
front of the plane of the given

polygon

- The other group contains those in
the back

- The polygons intersecting the plane
of the given polygon are split by that
plane

BSP Tree Traversal:Polygons

= Split along the plane defined by any polygon
from scene

= Classify all polygons into positive or negative
half-space of the plane

= If a polygon intersects plane, split polygon
into two and classify them both

= Recurse down the negative half-space
= Recurse down the positive half-space

Summary: BSP Trees

= Pros:
=« Simple, elegant scheme

= Correct version of painter’s algorithm back-to-front
rendering approach

» Still very popular for video games (but getting less
SO)

s Cons:

= Slow(ish) to construct tree: O(n log n) to split, sort
= Splitting increases polygon count: O(n2) worst-case

« Computationally intense preprocessing stage
restricts algorithm to static scenes

BSP Demo

e Useful Demo

http://www.symbolcraft.com/graphics/bsp/

