
Clipping & Hidden Surface Removal

Teacher: A.Prof Chengying Gao (高成英)

E-mail: mcsgcy@mail.sysu.edu.cn

School of Data and Computer Science

Computer Graphics

mailto:suzhuo3@mail.sysu.edu.cn

Viewing Pipeline Review

2Computer Graphics

Projection

3Computer Graphics

4

(a) Cube wireframe；(b) B is the nearest；(c) C the neartest

 Hidden surface removal (HSR) may reduce ambiguity

B

C

Why eliminating invisible objects?

5

Why eliminating invisible objects?

• Visible and invisible portions of objects

• Enhance reality (增加图形的真实感)
• Projection：3D space2D space

• 2D space：sorting according to depth may add 3D cueing

Visible Surface Determination

• Goal
- Given: a set of 3D objects and Viewing specification,

- Determine: those parts of the objects that are visible when
viewed along the direction of projection

• Elimination of hidden parts (hidden lines and surfaces)

• Visible parts will be drawn/shown with proper colors and
shade

6Computer Graphics

Outline

• Clipping

• Hidden Surface Removal

7Computer Graphics

Clipping

• Clipping of primitives is done usually before scan converting

the primitives

• Reasons being

• Scan conversion needs to deal only with the clipped version of the

primitive, which might be much smaller than its unclipped version

8Computer Graphics

How would we clip?

• 2D clipping

• Clipping is easy for Line and Polygons

• Clipping is hard for curve and Text

• They can be converted to lines and polygons first

9Computer Graphics

2D Clipping Methods

10

• Brute force approach:
• compute intersections with all sides of clipping window

• Inefficient: one division per intersection (需要计算除法)

Computer Graphics

Segment-Segment Intersection

Intersection with axis-aligned lines

13

2D Clipping Methods

• Cohen-Sutherland ：Codeing

• Mid-point clipping(中点分割裁剪)：Divided by 2，shift
operation

• Parametric clipping (梁友栋-Barsky 裁剪)：High efficiency

• Nicholl-Lee-Nicholl：More precise

• ……

Cohen-Sutherland Algorithm

• Idea: eliminate as many cases as possible without computing
intersections

• Start with four lines that determine the sides of the clipping
window

14Computer Graphics

x = xmaxx = xmin

y = ymax

y = ymin

The Cases

• Case 1: both endpoints of line segment inside all four lines
• Draw (accept) the line segment as is

• Case 2: both endpoints of line segment on same side of a line
• Discard (reject) the line segment

15Computer Graphics

x = xmaxx = xmin

y = ymax

y = ymin

The Cases

• Case 3: One endpoint inside, one outside

• Must do at least one intersection

• Case 4: Both outside

• May have part inside

• May the whole segment be out of windows

16Computer Graphics

x = xmaxx = xmin

y = ymax

Defining Outcodes

• For each endpoint, define an outcode：

• Outcodes divide space into 9 regions

• Computation of outcode requires at most 4 subtractions

17Computer Graphics

b0 b1 b2 b3

b0 = 1 if y > ymax, 0 otherwise

b1 = 1 if y < ymin, 0 otherwise

b2 = 1 if x > xmax, 0 otherwise

b3 = 1 if x < xmin, 0 otherwise

(outcode1 OR outcode2) == 0
line segment is inside

(outcode1 AND outcode2) != 0
line segment is totally outside

(outcode1 AND outcode2) == 0

line segment potentially crosses clip region

False positive

Some line segments that are classified as potentially
crossing the clip region actually don’t

Using Outcodes

• Consider the 5 cases below

• AB: (outcode(A) OR outcode(B) == 0)

• Accept line segment

19Computer Graphics

Using Outcodes

• EF: (outcode(E) AND outcode(F) ！= 0）

• Both outcodes have a 1 bit in the same place

• Line segment is outside of corresponding side of clipping window

• reject

20Computer Graphics

Using Outcodes

• CD: (outcode (C) AND outcode(D) == 0)

• Compute intersection

• Location of 1 in outcode(D) determines which edge to intersect with

• Note if there were a segment from A to a point in a region with 2 ones

in outcode, we might have to do two interesections

21Computer Graphics

Using Outcodes

• GH and IJ: same outcodes, logical AND yields zero

• Shorten line segment by intersecting with one of sides of
window

• Compute outcode of intersection (new endpoint of shortened
line segment)

• Reexecute algorithm

22Computer Graphics

Check Line P1P2:

(1) If P1P2is completely inside, accept it; if P1P2 is completely
outside, reject it; otherwise go to step 2;
(2) Find an end point P1(or P2) of lineP1P2 outside of region;
(3) Find the intersection point P’1to replace P1(or P2)
(4) If P1P2is completely inside , then accept this line, else go to step 2.

Algorithm

Efficiency

• In many applications, the clipping window is small relative to

the size of the entire data base

• Most line segments are outside one or more side of the window and

can be eliminated based on their outcodes

• Inefficiency when code has to be reexecuted for line segments

that must be shortened in more than one step

24Computer Graphics

Polygon clipping

• It’s harder than clipping segment.

• Clipping a segment produce a segment at most.

• Clipping a polygon may produce several polygons.

• To convex polygon, clipping a polygon only produces a polygon.

25Computer Graphics

Polygon clipping

Bounding Box

Bounding Box

Outline

• Clipping

• Hidden Surface Removal

35Computer Graphics

36

Hidden surface removal

 Object Space Method（对象空间）
 a.k.a. Object Precision

 Work in 3D before scan conversion

 Usually independent of resolution
 Important to maintain independence of output device(screen/ printer etc.)

 Hidden Line/surface Remove

• Image Space Method（图像空间）
 a.k.a. Image Precision

 Work on per-pixel/per of fragment after scan conversion

 Much faster, but resolution dependent

 Z-Buffer/Depth Buffer

37

Framework of HSR in object space

for(each object in the world) {

determine those parts of the object whose view is
unobstructed by other parts of it or any other object;

draw those parts in the appropriate color;

}

38

Features

• High preciseness，independent of resolution of display
devices (适合于精密的CAD工程领域)

• Complexity O(n2)：
• Each object should be compared with the other

• n: object number

• Back surface culling,…

39

Framework of HSR in image space

for(Each pixel in the image) {

connect the pixel and the viewpoint
find the nearest object；

compute the color for the pixel；

}

40

Features

• The image is constrained by resolution of the display
devices

• Complexity O(nN)：
• Objects should be sorted for each pixel (use coherence!每个象素都需
对物体排序)

• n: the number of primitives (polygons)

• N: the number of pixels

• Algorithms：z-buffer

Object Space Method

Back face culling

43

Back face culling

• Let V be the viewing direction from the object to the camera;
n the normal of the face to be tested
• NV<0：invisible

• NV0: visible

Back face culling

Limitations

• Only applicable to convex polyhedra

Painter’s Algorithm

For 2D application

For 2D application

For 2D application

Painter’s Algorithm:Problem

What Order?

Painter’s Algorithm:Problem

What Order?

Painter’s Algorithm:Problem

53

Z-buffer algorithm

54

Z-buffer algorithm

Polygon Scan Conversation

55Computer Graphics

56

Z-buffer algorithm

Z-Buffer Pseudo-code

Z-Buffer Pros

Z-Buffer cons

Binary Space Partitioning Trees

Binary Space Partition Trees

Creating BSP Trees: Objects

Creating BSP Trees: Objects

Creating BSP Trees: Objects

Creating BSP Trees: Objects

Creating BSP Trees: Objects

Splitting Objects

Traversing BSP-Trees

Traversing BSP-Trees

Traversing BSP-Trees

BSP-Trees: Viewpoint A

BSP-Trees: Viewpoint A

BSP-Trees: Viewpoint A

BSP-Trees: Viewpoint A

BSP-Trees: Viewpoint A

BSP-Trees: Viewpoint A

BSP-Trees: Viewpoint A

BSP-Trees: Viewpoint A

BSP-Trees: Viewpoint A

BSP-Trees: Viewpoint A

BSP-Trees: Viewpoint A

BSP-Trees: Viewpoint A

BSP-Trees: Viewpoint A

BSP-Trees: Viewpoint B

BSP-Trees: Viewpoint B

BSP Tree Construction: Polygons

BSP Tree Traversal:Polygons

Summary: BSP Trees

BSP Demo

• Useful Demo

http://www.symbolcraft.com/graphics/bsp/

