
Clipping & Hidden Surface Removal

Teacher: A.Prof Chengying Gao (高成英)

E-mail: mcsgcy@mail.sysu.edu.cn

School of Data and Computer Science

Computer Graphics

mailto:suzhuo3@mail.sysu.edu.cn

Viewing Pipeline Review

2Computer Graphics

Projection

3Computer Graphics

4

(a) Cube wireframe；(b) B is the nearest；(c) C the neartest

 Hidden surface removal (HSR) may reduce ambiguity

B

C

Why eliminating invisible objects?

5

Why eliminating invisible objects?

• Visible and invisible portions of objects

• Enhance reality (增加图形的真实感)
• Projection：3D space2D space

• 2D space：sorting according to depth may add 3D cueing

Visible Surface Determination

• Goal
- Given: a set of 3D objects and Viewing specification,

- Determine: those parts of the objects that are visible when
viewed along the direction of projection

• Elimination of hidden parts (hidden lines and surfaces)

• Visible parts will be drawn/shown with proper colors and
shade

6Computer Graphics

Outline

• Clipping

• Hidden Surface Removal

7Computer Graphics

Clipping

• Clipping of primitives is done usually before scan converting

the primitives

• Reasons being

• Scan conversion needs to deal only with the clipped version of the

primitive, which might be much smaller than its unclipped version

8Computer Graphics

How would we clip?

• 2D clipping

• Clipping is easy for Line and Polygons

• Clipping is hard for curve and Text

• They can be converted to lines and polygons first

9Computer Graphics

2D Clipping Methods

10

• Brute force approach:
• compute intersections with all sides of clipping window

• Inefficient: one division per intersection (需要计算除法)

Computer Graphics

Segment-Segment Intersection

Intersection with axis-aligned lines

13

2D Clipping Methods

• Cohen-Sutherland ：Codeing

• Mid-point clipping(中点分割裁剪)：Divided by 2，shift
operation

• Parametric clipping (梁友栋-Barsky 裁剪)：High efficiency

• Nicholl-Lee-Nicholl：More precise

• ……

Cohen-Sutherland Algorithm

• Idea: eliminate as many cases as possible without computing
intersections

• Start with four lines that determine the sides of the clipping
window

14Computer Graphics

x = xmaxx = xmin

y = ymax

y = ymin

The Cases

• Case 1: both endpoints of line segment inside all four lines
• Draw (accept) the line segment as is

• Case 2: both endpoints of line segment on same side of a line
• Discard (reject) the line segment

15Computer Graphics

x = xmaxx = xmin

y = ymax

y = ymin

The Cases

• Case 3: One endpoint inside, one outside

• Must do at least one intersection

• Case 4: Both outside

• May have part inside

• May the whole segment be out of windows

16Computer Graphics

x = xmaxx = xmin

y = ymax

Defining Outcodes

• For each endpoint, define an outcode：

• Outcodes divide space into 9 regions

• Computation of outcode requires at most 4 subtractions

17Computer Graphics

b0 b1 b2 b3

b0 = 1 if y > ymax, 0 otherwise

b1 = 1 if y < ymin, 0 otherwise

b2 = 1 if x > xmax, 0 otherwise

b3 = 1 if x < xmin, 0 otherwise

(outcode1 OR outcode2) == 0
line segment is inside

(outcode1 AND outcode2) != 0
line segment is totally outside

(outcode1 AND outcode2) == 0

line segment potentially crosses clip region

False positive

Some line segments that are classified as potentially
crossing the clip region actually don’t

Using Outcodes

• Consider the 5 cases below

• AB: (outcode(A) OR outcode(B) == 0)

• Accept line segment

19Computer Graphics

Using Outcodes

• EF: (outcode(E) AND outcode(F) ！= 0）

• Both outcodes have a 1 bit in the same place

• Line segment is outside of corresponding side of clipping window

• reject

20Computer Graphics

Using Outcodes

• CD: (outcode (C) AND outcode(D) == 0)

• Compute intersection

• Location of 1 in outcode(D) determines which edge to intersect with

• Note if there were a segment from A to a point in a region with 2 ones

in outcode, we might have to do two interesections

21Computer Graphics

Using Outcodes

• GH and IJ: same outcodes, logical AND yields zero

• Shorten line segment by intersecting with one of sides of
window

• Compute outcode of intersection (new endpoint of shortened
line segment)

• Reexecute algorithm

22Computer Graphics

Check Line P1P2:

(1) If P1P2is completely inside, accept it; if P1P2 is completely
outside, reject it; otherwise go to step 2;
(2) Find an end point P1(or P2) of lineP1P2 outside of region;
(3) Find the intersection point P’1to replace P1(or P2)
(4) If P1P2is completely inside , then accept this line, else go to step 2.

Algorithm

Efficiency

• In many applications, the clipping window is small relative to

the size of the entire data base

• Most line segments are outside one or more side of the window and

can be eliminated based on their outcodes

• Inefficiency when code has to be reexecuted for line segments

that must be shortened in more than one step

24Computer Graphics

Polygon clipping

• It’s harder than clipping segment.

• Clipping a segment produce a segment at most.

• Clipping a polygon may produce several polygons.

• To convex polygon, clipping a polygon only produces a polygon.

25Computer Graphics

Polygon clipping

Bounding Box

Bounding Box

Outline

• Clipping

• Hidden Surface Removal

35Computer Graphics

36

Hidden surface removal

 Object Space Method（对象空间）
 a.k.a. Object Precision

 Work in 3D before scan conversion

 Usually independent of resolution
 Important to maintain independence of output device(screen/ printer etc.)

 Hidden Line/surface Remove

• Image Space Method（图像空间）
 a.k.a. Image Precision

 Work on per-pixel/per of fragment after scan conversion

 Much faster, but resolution dependent

 Z-Buffer/Depth Buffer

37

Framework of HSR in object space

for(each object in the world) {

determine those parts of the object whose view is
unobstructed by other parts of it or any other object;

draw those parts in the appropriate color;

}

38

Features

• High preciseness，independent of resolution of display
devices (适合于精密的CAD工程领域)

• Complexity O(n2)：
• Each object should be compared with the other

• n: object number

• Back surface culling,…

39

Framework of HSR in image space

for(Each pixel in the image) {

connect the pixel and the viewpoint
find the nearest object；

compute the color for the pixel；

}

40

Features

• The image is constrained by resolution of the display
devices

• Complexity O(nN)：
• Objects should be sorted for each pixel (use coherence!每个象素都需
对物体排序)

• n: the number of primitives (polygons)

• N: the number of pixels

• Algorithms：z-buffer

Object Space Method

Back face culling

43

Back face culling

• Let V be the viewing direction from the object to the camera;
n the normal of the face to be tested
• NV<0：invisible

• NV0: visible

Back face culling

Limitations

• Only applicable to convex polyhedra

Painter’s Algorithm

For 2D application

For 2D application

For 2D application

Painter’s Algorithm:Problem

What Order?

Painter’s Algorithm:Problem

What Order?

Painter’s Algorithm:Problem

53

Z-buffer algorithm

54

Z-buffer algorithm

Polygon Scan Conversation

55Computer Graphics

56

Z-buffer algorithm

Z-Buffer Pseudo-code

Z-Buffer Pros

Z-Buffer cons

Binary Space Partitioning Trees

Binary Space Partition Trees

Creating BSP Trees: Objects

Creating BSP Trees: Objects

Creating BSP Trees: Objects

Creating BSP Trees: Objects

Creating BSP Trees: Objects

Splitting Objects

Traversing BSP-Trees

Traversing BSP-Trees

Traversing BSP-Trees

BSP-Trees: Viewpoint A

BSP-Trees: Viewpoint A

BSP-Trees: Viewpoint A

BSP-Trees: Viewpoint A

BSP-Trees: Viewpoint A

BSP-Trees: Viewpoint A

BSP-Trees: Viewpoint A

BSP-Trees: Viewpoint A

BSP-Trees: Viewpoint A

BSP-Trees: Viewpoint A

BSP-Trees: Viewpoint A

BSP-Trees: Viewpoint A

BSP-Trees: Viewpoint A

BSP-Trees: Viewpoint B

BSP-Trees: Viewpoint B

BSP Tree Construction: Polygons

BSP Tree Traversal:Polygons

Summary: BSP Trees

BSP Demo

• Useful Demo

http://www.symbolcraft.com/graphics/bsp/

